1(2)03
Nauka innov. 2005, 1(2):58-72
https://doi.org/10.15407/scin1.02.058
S.O. Soloviev, S.N. Orlik
L.V. Pisarzhevskii Institute of the Physical Chemistry, NAS of Ukraine, Kyiv
Catalytic Neutralizers of Exhaust Gases of Internal Combustion Engines
Section: Scientific and Technical Innovative Projects of National Academy of Sciences of Ukraine
Language: Ukrainian
Abstract: Scientific and technological approaches to synthesis of block honeycomb structure catalysts for purifying gaseous exhausts of internal combustion engines have been developed. Technology of ceramic block matrices of honeycomb structure, made of synthetic cordierite, with temperature coefficient of linear expansion not exceeding 1.2⋅10-6 degree-1 has been developed and tried out. Methods of synthesis and applying (onto ceramic block matrices) of fine-dispersed Al2O3 with prevailing size of the particles 2–4 nm, which provide increase in specific surface of said blocks up to 18–20 m2/g, have been developed. It has been found that stabilization of secondary carrier through modifying with CeO2 and La2O3 causes increase in thermostability of porous structure up to 900°C. Methods of applying active components (Pt, Pd, Rh) onto block matrices by means of consecutive impregnation from aquatic salt solutions have been developed. Optimization of thermoprocessing mode of catalytic coat was found to stabilize active components on catalyst surface and increase their activity and thermostability. It has been demonstrated using engine stand tests that aforementioned catalysts surpass foreign ones, in particular manufactured at firms Walker Germany) and Linda Gobex (Poland), concerning effectivity of purification of gas emissions. Technology as well as manufacture of catalysts for purification of exhaust gases of ICEs have been tried out and, respectively, adjusted at Experimental Plant "Catalysis and Ecology" of L. V. Pisarzhevskij Institute of Physical Chemistry of NAS of Ukraine. A design and model lots of catalytic neutralizers for "ZAZ" and "VAZ" cars have been developed and, respectively, manufactured in cooperation with "Zaporizhya's automobile plant" and CSA "Novokramatorsk's machine plant".
Key words: catalytic neutralizers, cordierite, secondary carrier, platinum metals, technology.
References:
1. Kaspar J., Fornasiero P., Hickey N. Automotive catalytic converters: current status and some perspectives. Catalysis Today, 2003, 77(4):419–449 [in English].
https://doi.org/10.1016/S0920-5861(02)00384-X
2. Guibet J.C., Faure-Birchem E. Fuels and Engines: Tecnilogy, Energe, Environment, vol.1. Editions Technip, Paris, 1999 [in English].
3. Degobert P. Automobiles and Pollution, Society of Automotive Engineers, Inc., Warrendale, PA, 1995 [in English].
4. Korjabkina N.A. Skrjabina R.A., Ushakov V.A. i dr. Issledovanie katalizatorov gorenija topliva. XVII. Vlijanie cerija i lantana na strukturnye i mehanicheskie svojstva oksida aljuminija. Kinetika i kataliz, 1997, 38(1):112–116 [in Russian].
5. Farrauto R.Dzh., Hek R.M. Blochnye katalizatory: nastojashhee i budushhee pokolenija. Kinetika i kataliz, 1998, 39(5):646–652 [in Russian].
6. Matthey J. Autocatalyst Systems: Past, Present and Future. EuropaCat. V, 2001, Limerick, Ireland. Abstracts Book 3:7–01 [in English].
7. Heck R., Farrauto R. Catalytic Air Pollution Control: Commercial Technology. N.Y.: Van Nostrand Reinhold, 1995 [in English].
8. Rashidzadeh M., Peyrovi M.H., Mondegarian R. Alumina-based supports for automotive Palladium Catalysts. React. Kinet. Catal. Lett, 2000, 69(1):115–122 [in English].
https://doi.org/10.1023/A:1005605228566
9. Popova N.M. Katalizatory ochistki vyhlopnyh gazov avtotransporta. Alma-Ata: Nauka, 1987 [in Russian].
10. Fornasiero P., Di Monte R., Ranga Rao G., Kaspar J. Rh-Loaded CeO2–ZrO2 Solid-Solutions as Highly Efficient Oxygen Exchangers: Dependence of the Reduction Behavior and the Oxygen Storage Capacity on the Structural-Properties. J. Catal, 1995, 151(1):168–177 [in English].
https://doi.org/10.1006/jcat.1995.1019
11. Vlaic G., Fornasiero P., Geremia S., Kaspar J. Relationship between the Zirconia Promoted Reduction in the Rh Loaded Ce0.5Zr0.5O2 Mixed Oxide and the Zr–O Local Structure. J. Catal, 1997, 168(2):386–392 [in English].
https://doi.org/10.1006/jcat.1997.1644
12. Ivanova A.S., Moroz Je.M., Poljakova G.A. Vlijanie sposoba poluchenija, prirody i soderzhanija R2O3 (R= Y, La, Ce) na fiziko-himicheskie svojstva kompozicii R2O3–Al2O3. Kinetika i kataliz, 1994, 35(5):786–790 [in Russian].
13. Piras A., Trovarelli A., Dolcetti G. Remarkable stabilization of transition alumina operated by ceria under reducing and redox conditions. Appl. Catal. B., 2000, 28(2):L77–L81 [in English].
https://doi.org/10.1016/S0926-3373(00)00226-5
14. Korjabkina N.A., Shkrjabina R.A., Ushakov V.A. i dr. Issledovanie katalizatorov gorenija topliva. XV. Termicheskaja stabil'nost' sistemy SeO2–Al2O3. Kinetika i kataliz, 1996, 37(1):117–122 [in Russian].
15. Morterra C., Magnacca G., Bolis V., Cerrato G. et. al. Structural, morphological and surface chemical features of Al2O3 catalyst supports stabilized with CeO2. in: A. Frennet, J. M. Bastin (Eds.), Catalysis and Automotive Pollution Control, vol.III, Elsevier, Amsterdam, 1995 [in English].
https://doi.org/10.1016/S0167-2991(06)81443-6
16. Heck R. M., Farrauto R. J. Catalytic Air Pollution Control: Commercial Technology. Van Nostrand Reinhold, New York, 1995 [in English].
17. Matsumoto S. Recent advances in automobile exhaust catalysts. Catalysis Today, 2004, 90(3–4):183–190 [in English].
https://doi.org/10.1016/j.cattod.2004.04.048
18. Haruta M., Date M. Advances in the catalysis of Au nanoparticles. Appl. Catal. A., 2001, 222(1–2):427–437 [in English].
https://doi.org/10.1016/S0926-860X(01)00847-X
19. Matthey J. Autocatalyst Systems: Past, Present and Future. EuropaCat V, 2001, Limerick, Ireland, P 1.001 [in English].
20. Berndt M., Pietro Landri P. An overview about Engelhard approach to non-standard environmental catalysis. Catalysis Today, 2002, 75:17–22 [in English].
https://doi.org/10.1016/S0920-5861(02)00038-X
21. Rashidzadeh M., Peyrovi M.H., Mondegarian R. Alumina-based supports for automotive palladium catalysts. React. Kinet. Catal. Lett., 2000, 69(1):115–122 [in English].
https://doi.org/10.1023/A:1005605228566
22. Ismatov H.R., Abdullaev A.B. K voprosu termicheskogo razlozhenija devjativodnogo nitrata aljuminija v prisutstvii parov vody. Zhurn. prikl. Himii, 1970, 43(3):668–670 [in Russian].
23. Solov'ev S.A., Kurilec Ja.P., Orlik S.N. Vlijanie vtorichnogo nositelja Al2O3 na fiziko-himicheskie harakteristiki katalizatorov trehmarshrutnyh prevrashhenij CO/NOx/CnHm. Teoreticheskaja i jeksperimental'naja himija, 2003, 39(1):50–54 [in Russian].
24. Ivanova A.S., Litvak G.S., Krjukova G.N. i dr. Real'naja struktura metastabil'nyh form oksida aljuminija. Kinetika i kataliz, 2000, 41(1):122–126 [in Russian].
25. Solov'ev S.A., Bejman A., Pavlikov V.N. i dr. Katalizatory ochistki gazovyh vybrosov dizel'nyh dvigatelej. Kataliz i neftehimija, 2003, 11:63–67 [in Russian].
26. Orlik S.N., Struzhko V.L., Mironjuk T.V. i dr. Vlijanie rodija na bifunkcional'nye oksidnye katalizatory MexOy/ZrO2 v reakcijah vosstanovlenija oksidov azota uglevodorodami. Teoreticheskaja i jeksperimental'naja himija, 2003, 39(3):179–184 [in Russian].
27. Matsumoto S. Catalytic Reduction of Nitrogen Oxides in Automotive Exhaust Containing Excess Oxygen by NOx Storage-Reduction Catalyst. CATTECH, 2000, 4(2): 102–109 [in English].
https://doi.org/10.1023/A:1011951415060
28. Ismagilov Z.R., Shkrabina R.A., Arendarskij D.A., Shikina N.V. Prigotovlenie i issledovanie blochnyh katalizatorov so vtorichnym termostabil'nym pokrytiem dlja ochistki othodjashhih gazov ot organicheskih soedinenij. Kinetika i kataliz, 1998, 39(5):653–656 [in Russian].
29. Soloviev S.A., Kapran A.Yu., Mokhnachuk O.V. Effect of Rare Earth Elements' Oxides upon Catalytic Properties of Palladium-Based Catalysts. Europacat VI, 31 August – 4 September 2003, Innsbruck, Austria, B 1.034 [in English].
30. Drozdov V.A., Cirul'nikov P.G., Pestrjakov A.N. i dr. Issledovanie kataliticheskoj aktivnosti v reakcijah glubokogo okislenija butana i sostojanija platiny v aljumoplatinovyh katalizatorah modificirovannyh lantanom i ceriem. Kinetika i kataliz, 1988, 29(2):484–488 [in Russian].
31. Akama H., Matsushita K. Recent lean NOx catalyst technologies for automobileexhaust control. Catalysis Surveys from Japan, 1999, 3:139–146 [in English].
https://doi.org/10.1023/A:1019027803221
32. Soloviev S., Boehman A., Pavlirov V. Development of porous ceramic filters with catalytic coat diesel particulate removal. United Engineering Foundation Conferences: Integrating Materials Science into Engineering structures and Devices. Lake Arrowhead, California, USA, November 11–16, 2001 [in English].
33. Solov'ev S.A., Kurilec Ja.P., Orlik S.N. i dr. Okislenie melkodispersnogo ugleroda na nanesennyh oksidnyh katalizatorah. Teoreticheskaja i jeksperimental'naja himija, 2003, 39(5):317–321 [in Russian].