Connection Between Ecological Plasticity of Elite Winter Wheat Varieties and DNA Methylation Pattern Polymorphism within Variety

TitleConnection Between Ecological Plasticity of Elite Winter Wheat Varieties and DNA Methylation Pattern Polymorphism within Variety
Publication TypeJournal Article
Year of Publication2016
AuthorsKravets, OP, Sokolova, DO, Berestyana, AM, Shnurenko, OR, Bannikova, MO, Morgun, BV, Kuchuk, MV, Grodzinsky, DM
Short TitleNauka innov.
DOI10.15407/scin12.02.057
Volume12
Issue2
SectionScientific and Technical Innovative Projects of National Academy of Sciences of Ukraine
Pagination57-67
LanguageUkrainian
Abstract
Connection between ecological plasticity of eight elite winter wheat varieties and DNA methylation pattern polymorphism within variety using seedlings from seeds with different germination rate was investigated. Polymorphism degree or «epigenetic distance» in restriction fragments’ range of PCR products was assessed using Nei index. Correlation (Rs=0,69) between variety grade determined by its productivity and ecological plasticity and degree of DNA methylation pattern polymorphism within variety was found. The prevalence of the greatest «epigenetic distance» (D≥0,1) in most productive and ecologically plasticized varieties was proved. The application of the «epigenetic distance» assessment in selection of new varieties for arias with unstable climate conditions was recommended.
Keywordsecological plasticity, epigenetic polymorphism, Nei distance, restriction analysis, wheat
References

1. Lekjavichus Je. Elementy obshchei teorii adaptatsii. Vilnjus: Mokclas, 1986 [in Russian].
2. Coleman M., Yin E., Peterson L. et al. Low dose ir ra diation alters the transcript profiles of human lym pho blas to id cells including genes associated with cytoge ne tic ra dioadaptive response. Radiat. Res. 2005. 164(41): 369-382. https://doi.org/10.1667/RR3356.1
3. Zhong L., Xu Y., Wang J. DNA-methylation changes induced by salt stress in wheat Triticum aestivum. Afr J Biotech. 2009. 8(22): 6201-6207. https://doi.org/10.5897/AJB09.1058
4. Yi C., Zhang S., Liu X. Does epigenetic polymorphism con tribute to phenotypic variances in Jatropha curcas L.? BMC Plant Biol. 2010. 10: 1-14. https://doi.org/10.1186/1471-2229-10-259
5. Sokolova D., Vengzhen G., Kravets A. The Effect of DNA Modification Polymorphism of Corn Seeds on Their Germination Rate, Seedling Resistance and Adaptive Capacity under UV-C Exposure. Amer J Plant Biol. 2014. 1(1): 1-14.
6. Sokolova D., Vengzhen G., Kravets A. Vliianie epi ge neticheskoho polimorfizma semian kukuruzy na skorost ih prorastaniia i ustoichivost prorostkov k UF-S oblu che niiu. Tsitologiia i henetika. 2014. 48(4): 31-38 [in Russian]. https://doi.org/10.3103/S0095452714040082
7. Sokolova D., Vengzhen G., Kravets A. Rol epihe ne ticheskoho polimorfizma prorostkov kukuruzy v reaktsiiah na UF-S obluchenie. Fiziologiia rastenii i henetika. 2014. 46(3): 221-229 [in Russian].
8. Sokolova D., Vengzhen G., Kravets A. An analysis of the correlation between the changes in satellite DNA methylation patterns and plant cell responses to the stress. CellBio. 2013. 2: 163-71.
https://doi.org/10.4236/cellbio.2013.23018
9. Tsaftaris et al. Epigenetic mechanisms in plants and their implications in plant breeding. Proceedings of the International Congress «In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution». 2003: 157-171.
10. Salmon A., Clotault J. et al. Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Sci. 2008. 174(1): 61-70. https://doi.org/10.1016/j.plantsci.2007.09.012
11. Shan X., Wang X. et al. Analysis of the DNA methylation of maize (Zea mays L.) in response to cold stress based on methylation-sensitive amplified polymorphisms. J. Plant Biol. 2013. V.56: 32-8. https://doi.org/10.1007/s12374-012-0251-3
12. Scheid G., Scheid M. Epigenetic responses to stress: triple defense? Curr Opin Plant Biol. 2012. no 5: 568- 573. https://doi.org/10.1016/j.pbi.2012.08.007
13. Luna E., Bruce T., Roberts M. et al. Next-generation systemic acquired resistance. Plant Physiol. 2012. V.158: 844-853. https://doi.org/10.1104/pp.111.187468
14. Rasmann S., De Vos M. et al. Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol. 2012. V.158: 854-863. https://doi.org/10.1104/pp.111.187831
15. Becker C. et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature. 2011. V.480: 245-249. https://doi.org/10.1038/nature10555
16. Herman J., Sultan S. Adaptive transgenerational plasticity in plants: Case studies, mechanisms, and imp lications for natural populations. Front Plant Sci. 2011. 2(102): 1-10. https://doi.org/10.3389/fpls.2011.00102
17. Boyko A., Kovalchuk I. Genome instability and epi gene tic modification - heritable responses to environmental stress? Curr Opin Plant Biol. 2011. 14(3): 260-266. doi: 10.1016/j.pbi.2011.03.003. https://doi.org/10.1016/j.pbi.2011.03.003
18. Tikunov Yu. M., Khrystaleva L. I. Application of ISSR Markers in the Genus Lycopersicon. Euphitica. 2003. V.131: 71-80. https://doi.org/10.1023/A:1023090318492
19. Bartlett J., Stirling D. PCR protocols. Humana Press Inc., 2003. https://doi.org/10.1385/1592593844
20. Nei M., Crow F., Denniston C. A new measure of genetic distance. Genetic distance. 1974: 63-76.
https://doi.org/10.1007/978-1-4684-2139-2_6
21. Ausubel F. et al. Current Protocols in Molecular Biology. 2004.