Механізми впливу слабкого магнітного поля на експресію геному: основи фізичної епігенетики
Заголовок | Механізми впливу слабкого магнітного поля на експресію геному: основи фізичної епігенетики |
Тип публікації | Journal Article |
Year of Publication | 2011 |
Автори | Запорожан, ВМ, Пономаренко, АІ |
Short Title | Nauka innov. |
DOI | 10.15407/scin7.06.050 |
Об'єм | 7 |
Проблема | 6 |
Рубрика | Наукові основи інноваційної діяльності |
Pagination | 50-69 |
Мова | Російська |
Анотація | Розроблена теорія, згідно з якою акцептором магнітного поля у генетичному апараті клітини є протеїни сімейства криптохромів (CRY), відомі як репресори головного циркадного транскрипційного комплексу CLOCK/BMAL1. Представлений механізм дозволяє магнітному полю виконувати функції біорегулятора на генетичному рівні. Опосередкована магнітним полем біорегуляція може позначатись на здоров’ї людини, а також впливати на епідеміологічні, еволюційні, кліматичні та інші глобальні процеси в біосфері.
|
Ключові слова | NF-κB, експресія генів, електромагнітне поле, криптохроми, радикальні пари, транскрипція, циркадні ритми |
Посилання | 1. Чижевский А.Л. Земное эхо солнечных бурь. 2-е ed. — М: Мысль, 1976. — 367 с.
2. Sage C., Carpenter D. Eds. BioInitiative Report. A Rationale for a Biologically-based Public Exposure Standard for Electromagnetic Fields (ELF and RF). — 2007; Available from: www.bioinitiative.org 3. Ventura C. et al. Turning on stem cell cardiogenesis with extremely low frequency magnetic fields // FASEB J. — 2005. — 19(1). — P. 155-157. 4. McCaig C.D. et al. Controlling cell behavior electrically: current views and future potential // Physiol. Rev. — 2005. — 85(3). — P. 943-978. 5. Carpenter D.O. and C. Sage. Setting prudent public health policy for electromagnetic field exposures // Rev. Environ Health. — 2008. — 23(2). — P. 91-117. 6. Mycielska M.E. and Djamgoz M.B. Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease // J. Cell. Sci. — 2004. — 117(Pt 9). P. 1631-1639. 7. Slack J.M. The spark of life: electricity and regeneration // Sci. STKE. — 2007. — 2007(405). — P. 54. 8. Zaporozhan V.N. and Ponomarenko A.I. Evidences of regulatory and signaling role of electromagnetic fields in biological objects (review of literature and own studies) // Proceedings of the 4th WSEAS Int. Conf. on Cellular and Mol. Biology, Biophysics and Bioengineering (BIO’08), Canary Islands, December 2008. — P. 43-47; Available from: http://www.wseas.us/e-library/conferences/2008/tenerife/CD-BC/paper/BC07.... 9. McCaig C.D., Song B. and Rajnicek A.M. Electrical dimensions in cell science // J. Cell. Sci. — 2009. — 122(Pt 23). — P. 4267-4276. 10. Zaporozhan V.N., Khait O.V. and Rebrova T.B. Shortwave therapy application in the complex treatment of bening and malignant uterine tumors // In Intnl Meeting Microwaves in medicine’91”, 1991, Belgrad. — P. 101-102. 11. Zaporozhan V.N., Khait O.V. and Bespoyasnaya V.V. Application of short-wave therapy in complex treatment for endometrial cancer // Eur. J. Gynaecol. Oncol. — 1993. — 14(4). — P. 296-301. 12. Запорожан В.Н., Беспоясна В.В., Соболев Р.В. Комбінована з електромагнітним випромінюванням корекція основних регуляторних систем організму при доброякісних пухлинах яєчників // Педіатрія, акушерство та гінекологія. — 1997(1). — P. 78-82. 13. Lupke M. et al. Gene expression analysis of ELF-MF exposed human monocytes indicating the involvement of the alternative activation pathway // Biochim. Biophys. Acta. — 2006. — 1763(4). — P. 402-412. 14. Maercker C. In vitro gene expression studies and their im pact on high content screening assays in EMF research. in Application of Proteomics and Transcriptomics in EMF Research. — 2005, Helsinki, Finland. 15. Запорожан В.Н. та ін. Можливі механізми біологічної дії геомагнітного поля (огляд літератури) // Експериментальна і клінічна медицина. — 2001. — № 3. — Р. 153-156. 16. Goldberg R.B. and Creasey W.A. A review of cancer induction by extremely low frequency electromagnetic fields. Is there a plausible mechanism? // Med. Hypotheses. — 1991. — 35(3). — P. 265-274. 17. Wertheimer N. and Leeper E. Adult cancer related to electrical wires near the home // Int. J. Epidemiol. — 1982. — 11(4). — P. 345-355. 18. Ritz T., Adem S. and Schulten K. A model for photoreceptor-based magnetoreception in birds // Biophys. J. — 2000. — 78(2). — P. 707-718. 19. Simko M. Cell type specific redox status is responsible for diverse electromagnetic field effects // Curr. Med. Chem. — 2007. — 14(10). — P. 1141-1152. 20. Fursa E.Y. Magnetic resonance as a channel of directed transmission of electromagnetic energy in animate nature, 2002. 21. Бучаченко А.Л., Кузнецов Д.А., Бердинский В.Л. Новые механизмы биологических эффектов электромагнитных полей // Биофизика. — 2006. — 51(3). — P. 545-552. 22. Nagakura S.O., Hayashi H. and Azumi T. Dynamic spin chemistry: magnetic controls and spin dynamics of chemical reactions. 1998, Tokyo, New York: Kodansha; Wiley. — 297 p. 23. Lednev V.V. Possible mechanism for the influence of weak magnetic fields on biological systems // Bioelectromagnetics. — 1991. — 12(2). — P. 71-75. 24. Liboff A.R. Electric-field ion cyclotron resonance. Bioelectromagnetics. — 1997. — 18(1). — P. 85-87. 25. Фурса Е.Я. Мироздание — мир волн, резонансов и ничего более. — Минск: УниверсалПресс, 2007. — 480 с. 26. Schulten K., Swenberg C.E. and Weller A. A biomagnetic sen sory mechanism based on magnetic field modulated co herent electron spin motion // Z. Phys. Chem. — 1978. — NF111. — P. 1-5. 27. Rodgers C.T. and Hore P.J. Chemical magnetoreception in birds: the radical pair mechanism // Proc.Natl. Acad. Sci. USA. — 2009. — 106(2). — P. 353-360. 28. Сагдеев Р.З. и др. Влияние магнитного поля на радикальные реакции // Письма в ЖЭТФ. — 1972(16). — P. 599-602. 29. Jonah C.D. and Madhava Rao B.S. Radiation chemistry: present status and future trends. 1st ed. Studies in physical and theoretical chemistry 87. — 2001, Amsterdam; New York: Elsevier. — 755 p. 30. Hayashi H. Introduction to dynamic spin chemistry: magnetic field effects on chemical and biochemical re actions, in World scientific lecture and course notes in chemistry. — vol. 8. — 2004, World Scientific: River Edge, N.J. 31. Eichwald C. and Walleczek J. Model for magnetic field effects on radical pair recombination in enzyme kinetics // Biophys. J. — 1996. — 71(2). — P. 623-631. 32. Izmaylov A.F., Tully J.C. and Frisch M.J. Relativistic interactions in the radical pair model of magnetic field sense in CRY-1 protein of Arabidopsis thaliana // J. Phys. Chem. A. — 2009. —113(44). — P. 12276-12284. 33. Brocklehurst B. Magnetic fields and radical reactions: recent developments and their role in nature // Chem. Soc. Rev. — 2002. — 31(5). — P. 301-311. 34. Ahmad M. et al. Magnetic intensity affects cryptochromedependent responses in Arabidopsis thaliana // Planta. — 2007. — 225(3). — P. 615-624. 35. Harris S.R. et al. Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana // J. R. Soc. Interface, 2009. 6(41). — P. 1193-11205. 36. Lin C. and Todo T. The cryptochromes // Genome Biol. — 2005. — 6(5). — P. 220. 37. Brudler R. et al. Identification of a new cryptochrome class. Structure, function, and evolution // Mol. Cell. — 2003. — 11(1). — P. 59-67. 38. Partch C.L. and Sancar A. Photochemistry and photobiology of cryptochrome blue-light photopigments: the search for a photocycle // Photochem Photobiol. — 2005. — 81(6). — P. 1291-1304. 39. Solov’yov I.A. and Schulten K. Magnetoreception through cryptochrome may involve superoxide // Biophys. J. — 2009. — 96(12). — P. 4804-4813. 40. Zhu H., Conte F. and Green C.B. Nuclear localization and transcriptional repression are confined to separable domains in the circadian protein CRYPTOCHROME // Curr. Biol. — 2003. — 13(18). — P. 1653-1658. 41. Chaves I. et al. Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance // Mol. Cell. Biol. — 2006. — 26(5). — P. 1743-1753. 42. Allada R. et al. Stopping time: the genetics of fly and mouse circadian clocks // Annu. Rev. Neurosci. — 2001. — 24. — P. 1091-1119. 43. Cashmore A.R. Cryptochromes: enabling plants and animals to determine circadian time // Cell. — 2003. — 114(5). — P. 537-543. 44. Kaushik R. et al., PER-TIM interactions with the photoreceptor cryptochrome mediate circadian temperature responses in Drosophila // PLoS Biol. — 2007. — 5(6). — P. 1257-1266. 45. Panda S. and Hogenesch J.B. It’s all in the timing: many clocks, many outputs // J. Biol. Rhythms. — 2004. — 19(5). — P. 374-387. 46. Langmesser S. et al. Interaction of circadian clock proteins PER2 and CRY with BMAL1 and CLOCK // BMC Mol Biol. — 2008. — 9. — P. 41. 47. Etchegaray J.P. et al. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock // Nature. — 2003. — 421(6919). — P. 177-182. 48. Kondratov R.V. et al. Dual role of the CLOCK/BMAL1 circadian complex in transcriptional regulation // FASEB J. — 2006. — 20(3). — P. 530-532. 49. Reiter R.J. Static and extremely low frequency electromagnetic field exposure: reported effects on the circadian production of melatonin // J. Cell. Biochem. — 1993. — 51(4). — P. 394-403. 50. Choi Y.M. et al. Extremely low frequency magnetic field exposure modulates the diurnal rhythm of the pain threshold in mice // Bioelectromagnetics. — 2003. — 24(3). — P. 206-210. 51. Goodman R. et al. Transcription in Drosophila melanogaster salivary gland cells is altered following exposure to lowfrequency electromagnetic fields: analysis of chromosome 3R // Bioelectromagnetics. — 1992. — 13(2). — P. 111-118. 52. Litovitz T.A. et al. Amplitude windows and transiently augmented transcription from exposure to electromagnetic fields // Bioelectromagnetics. — 1990. — 11(4). — P. 297-312. 53. Wei L.X., Goodman R., and Henderson A., Changes in levels of c-myc and histone H2B following exposure of cells to low-frequency sinusoidal electromagnetic fields: evidence for a window effect // Bioelectromagnetics. — 1990. — 11(4). — P. 269-272. 54. Hirai T. and Yoneda Y. Transcriptional regulation of neuronal genes and its effect on neural functions: gene expression in response to static magnetism in cultured rat hippocampal neurons // J. Pharmacol. Sci. — 2005. — 98(3). — P. 219-224. 55. Barnes F.S. and Greenebaum B. Handbook of biological effects of electromagnetic fields. Bioengineering and biophysical aspects of electromagnetic fields. 3rd ed. 2007, Boca Raton, FL: CRC/Taylor & Francis. [xxxvi]. — 440 p. 56. Mellstrom B. and Naranjo J.R. Mechanisms of Ca(2+)-dependent transcription // Curr Opin Neurobiol. — 2001. — 11(3). — P. 312-319. 57. Mellstrom B. et al. Ca2+-operated transcriptional networks: molecular mechanisms and in vivo models // Physiol. Rev. — 2008. — 88(2). — P. 421-449. 58. Bootman M.D. et al. An update on nuclear calcium signalling // J. Cell. Sci. — 2009. — 122(Pt 14). — P. 2337-2350. 59. Savignac M., Mellstrom B., and Naranjo J.R. Calcium-dependent transcription of cytokine genes in T lymphocytes // Pflugers Arch.— 2007. — 454(4). — P. 523-533. 60. Nuccitelli S. et al. Hyperpolarization of plasma membrane of tumor cells sensitive to antiapoptotic effects of magnetic fields // Ann. N-Y Acad. Sci. — 2006. — 1090. — P. 217-225. 61. Cho M.R. et al. Transmembrane calcium influx induced by acelectric fields // FASEB J. — 1999. — 13(6). — P. 677-683. 62. Chionna A.D.M. et al. Cell shape and plasma membrane alterations after static magnetic fields exposure // Eur. J. Histochem. — 2003. — 47(4). — P. 299-308. 63. Blackman C.F. et al. Effects of ELF (1-120 Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue in vitro // Bioelectromagnetics. — 1985. — 6(1). — P. 1-11. 64. Liboff A.R. Electric polarization and the viability of living systems: ion cyclotron resonance-like interactions // Electromagn. Biol. Med. — 2009. — 28(2). — P. 124-134. 65. Flipo D. et al. Increased apoptosis, changes in intracellular Ca2+, and functional alterations in lymphocytes and macrophages after in vitro exposure to static magnetic field // J. Toxicol. Environ. Health A. — 1998. — 54(1). — P. 63-76. 66. Conti P. et al. A role for Ca2+ in the effect of very low fre quency electromagnetic field on the blastogenesis of human lymphocytes // FEBS Lett. — 1985. — 181(1). — P. 28-32. 67. Walleczek J. Electromagnetic field effects on cells of the immune system: the role of calcium signaling // FASEB J. — 1992. — 6(13). — P. 3177-3185. 68. Запорожан В.Н. и др. Влияние изменений геомагнитного поля на формирование особенностей развития острых нарушений мозгового кровообращения // Експериментальна і клінічна медицина. — 2002(2). — P. 100-102. 69. Bonizzi G. and Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity // Trends. Immunol. — 2004. — 25(6). — P. 280-288. 70. Hayden M.S. and Ghosh S. Signaling to NF-kappaB // Ge nes. Dev. — 2004. —18(18). — P. 2195-2224. 71. Bozek, K. et al. Promoter analysis of Mammalian clock con trolled genes // Genome Inform. — 2007. — 18. — P. 65-74. 72. Nader N., Chrousos G.P. and Kino T. Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications // FASEB J. — 2009. — 23(5). — P. 1572-1583. 73. McKay L.I. and Cidlowski J.A. CBP (CREB binding protein) integrates NF-kappaB (nuclear factor-kappaB) and glucocorticoid receptor physical interactions and antagonism // Mol. Endocrinol. — 2000. — 14(8). — P. 1222-1234. 74. Nikolova T. et al. Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cellderived neural progenitor cells // FASEB J. — 2005. — 19(12). — P. 1686-1688. 75. Delle Monache S. et al. Extremely low frequency electromagnetic fields (ELF-EMFs) induce in vitro angiogenesis process in human endothelial cells // Bioelectromagnetics. — 2008. — 29(8). — P. 640-648. 76. Goodman R. et al. Extremely low frequency electro magnetic fields activate the ERK cascade, increase hsp70 protein levels and promote regeneration in Planaria // Int. J. Radiat Biol. — 2009.— P. 1-9. 77. Maercker C. Do electromagnetic fields induce stress response? A whole-genome approach helps to identify cellular pathways modulated by electromagnetic fields in Application of Proteomics and Transcriptomics in EMF Research. — 2005, Helsinki, Finland. 78. Simko M. and Mattsson M.O. Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation // J. Cell. Biochem. — 2004. — 93(1). — P. 83-92. 79. Bonhomme-Faivre L. et al. Alterations of biological parameters in mice chronically exposed to low-frequency (50 Hz) electromagnetic fields // Life Sci. — 1998. — 62(14). — P. 1271-1280. 80. Bonhomme-Faivre L. et al. Study of human neurovegetative and hematologic effects of environmental low-frequency (50-Hz) electromagnetic fields produced by transformers // Arch. Environ. Health. — 1998. — 53(2). — P. 87-92. 81. Frahm, J. et al. Alteration in cellular functions in mouse macrophages after exposure to 50 Hz magnetic fields // J Cell Biochem. — 2006. — 99(1). — P. 168-177. 82. Pikarsky E. and Ben-Neriah Y. NF-kappaB inhibition: a double-edged sword in cancer? // Eur. J. Cancer. — 2006. — 42(6). — P. 779-784. 83. Li Q., Withoff S. and Verma I.M., Inflammation-associated cancer: NF-kappaB is the lynchpin // Trends. Immunol. — 2005. — 26(6). — P. 318-325. 84. Solar Cycle Progression Space Weather Prediction Center (NOAA/SWPC) 2009; Available from: http://www.swpc.noaa.gov/SolarCycle/ |